RELATIONSHIP OF SITE-SPECIFIC MAXIUM SUSTAINABLE YIELD OF TURBAN SHELL Batillus cornutus WITH ALGAL STANDING STOCK BIOMASS ALONG THE COAST OF JEJU ISLAND, KOREA

Jeju National University

Seok-Beom Hong, Seungmok Ha*, Byungyeob Kim, Seong-Cheol Kim, and Sukgeun Jung

Turban shell (Batillus cornutus)

- Classification: Mollusca Gastropoda Turbinidae
- ► Habitat: Inhabitation rock area of intertidal zone 20m depth interior and exterior
- Distribution: Ulleung Island, the south coast of Korea, mainly Jeju Island
- Economically important species to Jeju diving woman (Hae-

Issues

Decrease in Annual catches of turban shell in Jeju island (1968-2013)

- About 2,000 metric tons in $2002 \rightarrow \text{About 1,000}$ metric tons in 2010
- A steady decrease of about 50% since 2002
- Similar trend with the decreasing of diving woman number.

Possible reasons of declining the catches

- > Overfishing
- > Decrease in the number of diving woman
- > Environmental change
 - Whitening event
 - Pollution
 - Climate change

X No one knows the main reason of reduced catches X

Objective

Analyze the relationship between the stock status of turban shell and the biomass of algae.

Because algae are the major prey of turban shell.

Approach & Methods

The analysis of the relationship between turban shell and algae

- Selecte algae species: *Ecklonia cava* and *Amphiroa ancepsand*
- Brown algal species(Ecklonia cava): Feed of turban shell
- Red algal species(Amphiroa ancepsand): Associated with whitening event
- Collect algae data

Approach & Methods

Characteristics of our data

- 1. Long-term turban shell data collected.
- 2. Algae data collected only two years (2008, 2010).
 - 3. Algae data is spatially detailed data.

Due to the lack of time-based data,

Analyze the relationship between the algae and the turban shell,
using spatial-based data,

Approach & Methods

Estimate the MSY (Maximum sustainable yield) of turban shell.

Analyze the relationship between the wet weight of *Ecklonia cava* and MSY

Analyze the relationship between the wet weight of Amphiroa ancepsand and MSY

Results

The estimation of MSY (Maximum sustainable yield)

Results

Relationship with Ecklonia cava and MSY

Positive relationship between the wet weight of *Ecklonia cava* and MSY

Results

Relationship between Amphiroa ancepsand and MSY

Negative relationship between the wet weight of *Amphiroa ancepsand* and MSY

In the future

Future direction of research

Consideration to the time-based and spatial data of seaweed colony

Analyze of the relationship between sea level of seaweed distribution and catches of turban shell through timebased, spatial data

Identify the effect for decreasing of seaweed colony to biomass of turban shell

Expectation of increase in turban shell species by protecting seaweed colony

Thank you